Saturn's lonosphere

Ring Rain and Other Drivers

Luke Moore, Marina Galand, Arv Kliore, Andy Nagy, James O'Donoghue

Imperial College London

Outline

- Introduction to Saturn's ionosphere
 - Basic properties and theory
- Observations: what do we know?
 - Radio occultations:
 - Saturn Electrostatic Discharges:
 - Ring rain:

N_e(h) N_{MAX}(SLT) H₃⁺(12 SLT)

- Theory/Models: what do we think we know?
 - Comparisons with observations
- Summary
 - Remaining uncertainties, future observations

Atmospheric Layers

Wikipedia

Vertical Temperature Profile

Latitudinal Temperature Behavior

Saturn's lonosphere

UV: from solar and stellar occultations, represent T_{exo} IR: from H_3^+ emissions, represent effective column temperature

Thermosphere of Saturn

Initial Theory: Saturn's Ionosphere

Saturn in the 21st Century

Saturn's lonosphere

Charge-exchange and recombination $H_{2}^{+} + H_{2} \rightarrow H_{3}^{+} + H$ FAST $H_{3}^{+} + e^{-} \rightarrow H_{2}O + H_{2} \rightarrow OH + 2H$ FAST $H^{+} + e^{-} \rightarrow H$ SLOW

Observations

Radio Occultations

Summary of Outer Planet Radio Occultations

Saturn in the 21st Century

Saturn's lonosphere

* analyzed; ** taken to-date

Pre-Cassini Saturn Radio Occultations

Saturn in the 21st Century

Saturn's lonosphere

Narrow low-altitude layers of N_e

N_{MAX} ~ 10⁴ cm⁻³

h_{MAX} ~ 1000-2500 km

Cassini Equatorial Radio Occultations

Saturn in the 21st Century

Cassini Equatorial Dawn/Dusk Asymmetry

Saturn in the 21st Century

6000

Saturn's lonosphere

Kliore et al (2009)

Cassini Latitudinal Trend in N_e

Saturn in the 21st Century

Cassini Latitudinal Trend in N_e

Saturn in the 21st Century

Saturn's lonosphere

Moore et al (2010)

Saturn Electrostatic Discharges (SEDs)

aturn in the 21st Century

- Broadband, short-lived, impulsive radio emission, ~10 hr periodicity
 - Initially thought to originate in Saturn's rings, later shown to be associated with powerful lightning storms in Saturn's lower atmosphere
 - Detected by Voyager and Cassini (~9 SED storms to-date, each lasting weeks-months)
- Observed low-frequency cutoff can be used to derive N_{MAX}(SLT)
- Specific latitudes (primarily -35°), single storm locations
- Powerful lightning also observed at Jupiter, but no "JEDs"
 - Perhaps due to attenuation of radio waves by Jupiter's ionosphere

N_{MAX}(SLT) from SEDs

2006-02-16 (047) 21:00:00 SCET 2006-02-17 (048) 04:00:00 2.0 10⁷ · 1.8 absorption 1.6 dB Above Background (30%) "over hor zon" SED 1.4 low frequency 1.2 cutoff 1.0 **Cloud** at **Cloud at CM Cloud** at 10^{6} horizon 0.8 horizon 0.6 21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00 52.89 52.77 52.64 52.51 52.38 52.26 52.13 52.00 47.87 81.56 115.24 148.92 182.61 216.29 249.97 283.65 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15

6.00

6.01

6.02

6.02

LT of storm from images, angle of incidence α calculated from storm location and Cassini position

Orbit 21

5.98

5.98

5.99

6.00

Frequency (Hz)

SCET

 R_{s}

Lon

Lat

IT

N_{MAX}(SLT) from SEDs

Saturn in the 21st Century

Protonated Molecular Hydrogen: H₃⁺

Saturn in the 21st Century

- First astronomical spectroscopic detection in the universe at Jupiter
 - Auroral IR measurements with CFHT (Drossart et al., 1989)
- Bright emission lines in K-band (2-2.5 mm) and L-band (3-4 mm) atmospheric windows
 - Strong methane absorption in the L-band
 - Therefore, at the giant planets (where H₃⁺ is above the homopause), H₃⁺ appears as bright emission above a dark background
- Highly temperature dependent
- Can be used to derive ion temperatures, densities, and velocities
- Important as a coolant, e.g.:
 - Efficient thermostat at Jupiter
 - Hot exoplanets with dissociated H₂ lose a key cooling mechanism

Connerney and Satoh (2000)

First Low-Latitude Measurements of H₃⁺

Saturn in the 21st Century

Saturn's Ionosphere

- H₃⁺ frequently used as a diagnostic of outer planet ionospheres (Jupiter, Saturn, Uranus), BUT:
- H₃⁺ only detected in Saturn's auroral regions until 17 April 2011 Keck NIRSPEC observations

Wavelength (micron)

Latitudinal Variations in H₃⁺ Emission

Saturn in the 21st Century

Saturn's lonosphere

 local extrema mirrored at magnetically conjugate latitudes, and also map to structures in the rings

Latitudinal Variations in H₃⁺ Emission

Saturn in the 21st Century

Saturn's lonosphere

local extrema mirrored at magnetically conjugate latitudes, and also map to structures in the rings

Summary of Observational Constraints

Radio occultations

- Unusual vertical structure:
- Average peak values:
- Dawn/dusk asymmetry:
- Latitudinal variation:

Narrow low-altitude layers of N_{e}				
$N_{MAX} \simeq 10^4 \text{ cm}^{-3}$	h _{MAX} ~ 1000-2500 km			
DAWN N _{MAX} < DUSK N _{MAX}		DAWN $h_{MAX} > DUSK h_{MAX}$		
Minimum N_{MAX} at equator; N_{MAX} increases with latitude				

Saturn Electrostatic Discharges (SEDs)

- Strong diurnal variation:
- 1-2 order of magnitude variation in N_{MAX}
- Noon and midnight values:

 $N_{MAX}(noon) \sim 10^5 \text{ cm}^{-3}$ $N_{MAX}(midnight) \sim 10^{3-4} \text{ cm}^{-3}$

"Ring Rain"

- Latitudinal structure in H_3^+ : Non-solar structure in H_3^+ emission; coupling to rings
- Mid- and low-latitude temperatures and densities?

Overview of Saturn's Main Ionosphere

Saturn in the 21st Century

Saturn's lonosphere

Charge-exchange and recombination $H_{2}^{+} + H_{2} \rightarrow H_{3}^{+} + H \qquad \text{FAST}$ $H_{3}^{+} + e^{-} \rightarrow H_{2}O + H_{2} \rightarrow OH + 2H \qquad \text{FAST}$ $H^{+} + e^{-} \rightarrow H \qquad \text{SLOW}$

Hydrocarbon photochemistry

Saturn in the 21st Century

Saturn's lonosphere

Simplified Schematic of Hydrocarbon

Moses and Bass (2000)

Hydrocarbon/metallic ion ledge

Saturn in the 21st Century

Predicted Ionospheric Densities

Radio Occultation Constraints:

 $N_{MAX} \simeq 10^4 \text{ cm}^{-3}$

h_{MAX} ~ 1000-2500 km

Saturn in the 21st Century

Radio Occultation Constraints:

Saturn in the 21st Centur

 $N_{MAX} \simeq 10^4 \text{ cm}^{-3}$

Radio Occultation Constraints DAWN N_{MAX} < DUSK N_{MAX}

DAWN h_{MAX} > DUSK h_{MAX}

Saturn in the 21st Century

Radio Occultation Constraints:

Saturn in the 21st Century

Narrow low-altitude layers of N_e

Saturn's lonosphere

 Structure driven by vertical wind shear interactions with magnetic field.
 Such shears could result from gravity wave breaking.

Other sources remain possible, such as meteoric layers.

Radio Occultation Constraints:

Saturn's lonosphere

Saturn in the 21st Century

SED constraints:

1-2 order of magnitude variation in N_{MAX}

Saturn in the 21st Century

Moore et al (2012)

- Drastic losses required to match nighttime decline
 - Non-photochemical solution? Low altitude ion layers?

Ring rain constraints: Non-solar structure in H₃⁺ emission; coupling to rings

Saturn in the 21st Century

Ring rain constraints: Non-solar structure in H₃⁺ emission; coupling to rings

Saturn in the 21st Century

Ring rain: where is it?

Saturn in the 21st Century

Saturn's lonosphere

Hydrocarbon reflection of sunlight

See poster by James O'Donoghue

Summary of Model Data Comparisons

Saturn in the 21st Century

Saturn's lonosphere

- Radio occultations
 - Unusual vertical structure:
 - Average peak values:
 - Dawn/dusk asymmetry:
 - Latitudinal variation:

Narrow low-altitude layers of NeGravity waves. (Meteors?) $N_{MAX} \sim 10^4 \text{ cm}^{-3}$ $h_{MAX} \sim 1000-2500 \text{ km}$ DAWN $N_{MAX} < DUSK N_{MAX}$ DAWN $h_{MAX} > DUSK h_{MAX}$ Water influx and/or H_2 (v≥4) enhancements.Minimum N_{MAX} at equator; N_{MAX} increases with latitude

Latitudinal variation in water influx.

- Saturn Electrostatic Discharges (SEDs)
 - Strong diurnal variation:
 - Noon and midnight values:
- "Ring Rain"

• Latitudinal structure in H_3^+ :

1-2 order of magnitude variation in $\ensuremath{\mathsf{N}_{\mathsf{MAX}}}$

 $N_{MAX}(noon) \sim 10^5 \text{ cm}^{-3}$ $N_{MAX}(midnight) \sim 10^{3-4} \text{ cm}^{-3}$

Require extreme ionization enhancement process. Low altitude layers?

Non-solar structure in H_3^+ emission; coupling to rings Latitudinal variation in water influx and/or heating?

A look towards the future

Radio occultations

 Further mid- and high-latitude occultations to help solidify the trend in N_{MAX} there

Proximal orbits

- Ion densities? Electron densities?
- SEDs? (attenuation varies with frequency, so Cassini SED measurements close to Saturn may alter derived N_{MAX} trend)

"Ring Rain" observations

Self-consistent H₃⁺ temperatures and densities (H⁺ densities)

Water measurements

 Help reinforce influxes derived from Ionospheric model-data comparisons Χ

Representative Ionospheric Structure

Saturn in the 21st Century

- Basic Ionospheric structure
 - Basic

Thermal Profile Comparisons

Thermosphere:

- Positive temperature gradient
- Collective (fluid) behavior

Exosphere:

- Constant temperature ("exospheric temperature")
- Infrequent collisions →
 kinetic particle behavior and
 escape

I. Müller-Wodarg